home *** CD-ROM | disk | FTP | other *** search
- /* ----------------------------------------------------------------------- *
- * *
- * (C) Copyright 1996 by: aiNet *
- * Trubarjeva 42 *
- * SI-3000 Celje *
- * Europe, Slovenia *
- * All Rights Reserved *
- * *
- * Subject: C code for single vector prediction. *
- * File: T3RUNTIM - The XOR problem with low level model creation *
- * *
- * ----------------------------------------------------------------------- */
-
- /*--------------------------------------------------------------------------
- Here it will be shown how we can colve the XOR problem using
- aiNet C functions
-
- The XOR problem:
- ================
- Number of model vectors: 4
- Number of variables: 3
- Number of input variables: 3
- Any discrete variables: NONE
-
- Model vectors: Inp,Inp,Out
- row 1: 1, 1, 0
- row 2: 1, 0, 1
- row 3: 0, 1, 1
- row 4: 0, 0, 0
-
- Test vectors (vectors which will be used in prediction) together with
- penalty coefficient and penalty method.
-
- Prediction vectors: Inp Inp Out
- prd 1: 0.9 0.1 ??
- prd 2: 0.1 0.9 ??
- prd 3: 0.2 0.2 ??
- prd 4: 0.7 0.7 ??
-
- Penalty coeffcient: 0.5
- Penalty methods: DYNAMIC
-
- NOTE: Selected penalty coefficients are in no case optimal.
- They were selected randomly, to perform a few tests.
- The test results were compared with the results calculated by
- the main aiNet 1.14 application.
-
- --------------------------------------------------------------------------
- Results (rounded at fourth decimal):
- --------------------------------------------------------------------------
-
- Penalty cefficient: 0.5
- Penalty method: DYNAMIC
- (RESULT)
- Prediction vectors: Inp Inp ( Out )
- prd 1: 0.9 0.1 (0.6948)
- prd 2: 0.1 0.9 (0.6948)
- prd 3: 0.2 0.2 (0.3321)
- prd 4: 0.7 0.7 (0.3869)
-
- ---------------------------------------------------------------------------*/
-
- /*
- * This file assumes that ainetxx.dll will be loaded at run time,
- * which is default option and no flags need to be defined.
- * ainetxx.lib must NOT be included in the linking process.
- */
-
- #include "ainetdll.h"
- #include <stdio.h>
- #include <stdlib.h>
-
- /*
- * Path and the filename of dll which will be loaded.
- */
-
- #if defined(__WIN32__)
- const char ainetDll[] = "ainet32.dll";
- #else
- const char ainetDll[] = "ainet16.dll";
- #endif
- /*
- * Pointers to ainet dll functions. They are made global - all functions
- * can use them.
- */
-
- t_aiRegistration aiRegistration;
- t_aiGetVersion aiGetVersion;
- t_aiCreateModel aiCreateModel;
- t_aiCreateModelFromCSVFile aiCreateModelFromCSVFile;
- t_aiDeleteModel aiDeleteModel;
- t_aiNormalize aiNormalize;
- t_aiDenormalize aiDenormalize;
- t_aiPrediction aiPrediction;
- t_aiGetNumberOfVariables aiGetNumberOfVariables;
- t_aiGetNumberOfModelVectors aiGetNumberOfModelVectors;
- t_aiGetNumberOfInputVariables aiGetNumberOfInputVariables;
- t_aiSetDiscreteFlag aiSetDiscreteFlag;
- t_aiGetDiscreteFlag aiGetDiscreteFlag;
- t_aiSetVariable aiSetVariable;
- t_aiGetVariable aiGetVariable;
- t_aiGetVariableVB aiGetVariableVB;
- t_aiGetCSVFileModelSize aiGetCSVFileModelSize;
- // New in version 1.24
- t_aiSetCapacity aiSetCapacity;
- t_aiGetCapacity aiGetCapacity;
- t_aiGetFreeEntries aiGetFreeEntries;
- t_aiInsertModelVector aiInsertModelVector;
- t_aiOverwriteModelVector aiOverwriteModelVector;
- t_aiAppendModelVector aiAppendModelVector;
- t_aiDeleteModelVector aiDeleteModelVector;
- t_aiPredictionEx aiPredictionEx;
- t_aiExcludeModelVector aiExcludeModelVector;
- t_aiExcludeModelVectorRange aiExcludeModelVectorRange;
- t_aiIsModelVectorExcluded aiIsModelVectorExcluded;
- t_aiSaveCSVFile aiSaveCSVFile;
-
-
- /*
- * ainet32.dll module variable.
- */
-
- HINSTANCE hLib;
-
- /*
- * The load_aiNetLibrary() function is implemented below.
- * This function will load ainet32.dll and define pointers to
- * ainet functions.
- */
-
- int load_aiNetLibrary(void);
-
- /*
- *
- */
-
- void main()
- {
- /*
- * Here we present how to create a model in a "low level" way.
- * We recommend you to avoid this model creation type. Use rather
- * aiCreateModel functions instead. Please also note that model must
- * not be deleted using aiDeleteModel function.
- */
-
- int i;
- int version;
-
- float* data[4]; /* Model data */
- float row1[3] = { 1,1,0 }; /* model vectors */
- float row2[3] = { 1,0,1 };
- float row3[3] = { 0,1,1 };
- float row4[3] = { 0,0,0 };
- int disc[3] = {0,0,0}; /* Discrete flags */
- float n1[3]; /* Normalization */
- float n2[3]; /* buffers */
- unsigned char flag[4]; /* NEW 1.24: additional information for prediction */
-
- aiModel model = { 0, /* data */
- 4, /* nMV */
- 3, /* nVar */
- 2, /* ni */
- 0, /* discrete */
- 0, /* n1 */
- 0 /* n2 */
- };
-
- float predict[4][3] = { { 0.9,0.1, 999 }, /* vectors to be predicted */
- { 0.1,0.9, 999 },
- { 0.2,0.2, 999 },
- { 0.7,0.7, 999 } };
-
- /*
- * Setup the model
- */
-
- data[0] = row1;
- data[1] = row2;
- data[2] = row3;
- data[3] = row4;
- model.data = data;
- model.discrete = disc;
- model.n1 = n1;
- model.n2 = n2;
- model.flag = flag;
-
- /*
- * Load DLL
- */
- if( !load_aiNetLibrary() ) {
- exit(EXIT_FAILURE);
- }
-
- /*
- * Title
- */
-
- version = aiGetVersion();
- printf( "\naiNetDLL version %i.%i! (C) Copyright by aiNet, 1996",
- version/100, version%100 );
- printf( "\n---------------------------------------------------\n" );
-
- /*
- * Register DLL
- */
-
- aiRegistration( "Your registration name", "Your code" );
-
- /*
- * Output the model
- */
-
- printf( "\n Model name: aiNet DLL test 3 (Low level creation)");
- printf( "\nNumber of model vectors: %i", aiGetNumberOfModelVectors(&model));
- printf( "\n Number of variables: %i", aiGetNumberOfVariables(&model));
- printf( "\n Variable names: A, B, A xor B" );
- printf( "\n Discrete flag: %i, %i, %i",
- aiGetDiscreteFlag(&model,1),
- aiGetDiscreteFlag(&model,2),
- aiGetDiscreteFlag(&model,3) );
- for( i=1; i<=aiGetNumberOfModelVectors(&model); i++ ) {
- printf( "\n\t\t\t %3.1lf, %3.1lf, %3.1lf",
- aiGetVariable(&model, i,1),
- aiGetVariable(&model, i,2),
- aiGetVariable(&model, i,3) );
- }
-
- /*
- * Normalize the model
- */
-
- aiNormalize( &model, NORMALIZE_STATISTICAL );
-
- /*
- * Prediction: Pen. coefficient = 0.50, Pen. method = STATIC
- * This test has dynamic penalty coefficient 0.50
- */
-
- printf( "\n\n Penalty coefficient: 0.50" );
- printf( "\n Penalty method: DYNAMIC" );
- printf( "\n\t A(inp), B(inp), A xor B(out)" );
- for ( i=0; i<4; i++ ) {
- aiPrediction( &model, predict[i], 0.50, PENALTY_DYNAMIC );
- printf( "\n\t%7.4f, %7.4f, %7.4f",
- predict[i][0],predict[i][1],predict[i][2] );
- }
-
- /*
- * Denormalize the model (in this case it is not necessary)
- */
-
- aiDenormalize(&model);
-
- /*
- * We must not call the aiDeleteModel function here since the model
- * was not allocated dynamicaly using the aiCreateModel function.
- */
-
- FreeLibrary(hLib);
-
- printf( "\n\nEnd." );
- exit(EXIT_SUCCESS);
- }
-
- int load_aiNetLibrary()
- {
- /*
- * Load the Dynamic Link Library AINET32.DLL
- */
-
- hLib = LoadLibrary(ainetDll);
- if((unsigned)hLib<=HINSTANCE_ERROR){
- char bfr[40];
- wsprintf(bfr, "Failure loading library: %s", ainetDll);
- MessageBox(NULL, bfr, "Error", MB_OK|MB_APPLMODAL);
- return 0;
- }
-
- /*
- * Get all the entry points for the functions in ainet32.dll
- */
-
- aiRegistration = (t_aiRegistration) GetProcAddress(hLib, "aiRegistration");
- aiGetVersion = (t_aiGetVersion) GetProcAddress(hLib, "aiGetVersion");
- aiCreateModel = (t_aiCreateModel) GetProcAddress(hLib, "aiCreateModel");
- aiCreateModelFromCSVFile = (t_aiCreateModelFromCSVFile) GetProcAddress(hLib, "aiCreateModelFromCSVFile");
- aiDeleteModel = (t_aiDeleteModel) GetProcAddress(hLib, "aiDeleteModel");
- aiNormalize = (t_aiNormalize) GetProcAddress(hLib, "aiNormalize");
- aiDenormalize = (t_aiDenormalize) GetProcAddress(hLib, "aiDenormalize");
- aiPrediction = (t_aiPrediction) GetProcAddress(hLib, "aiPrediction");
- aiGetNumberOfVariables = (t_aiGetNumberOfVariables) GetProcAddress(hLib, "aiGetNumberOfVariables");
- aiGetNumberOfModelVectors = (t_aiGetNumberOfModelVectors) GetProcAddress(hLib, "aiGetNumberOfModelVectors");
- aiGetNumberOfInputVariables = (t_aiGetNumberOfInputVariables) GetProcAddress(hLib, "aiGetNumberOfInputVariables");
- aiSetDiscreteFlag = (t_aiSetDiscreteFlag) GetProcAddress(hLib, "aiSetDiscreteFlag");
- aiGetDiscreteFlag = (t_aiGetDiscreteFlag) GetProcAddress(hLib, "aiGetDiscreteFlag");
- aiSetVariable = (t_aiSetVariable) GetProcAddress(hLib, "aiSetVariable");
- aiGetVariable = (t_aiGetVariable) GetProcAddress(hLib, "aiGetVariable");
- aiGetVariableVB = (t_aiGetVariableVB) GetProcAddress(hLib, "aiGetVariableVB");
- aiGetCSVFileModelSize = (t_aiGetCSVFileModelSize) GetProcAddress(hLib, "aiGetCSVFileModelSize");
- aiSetCapacity = (t_aiSetCapacity) GetProcAddress(hLib, "aiSetCapacity");
- aiGetCapacity = (t_aiGetCapacity) GetProcAddress(hLib, "aiGetCapacity");
- aiGetFreeEntries = (t_aiGetFreeEntries) GetProcAddress(hLib, "aiGetFreeEntries");
- aiInsertModelVector = (t_aiInsertModelVector) GetProcAddress(hLib, "aiInsertModelVector");
- aiOverwriteModelVector = (t_aiOverwriteModelVector) GetProcAddress(hLib, "aiOverwriteModelVector");
- aiAppendModelVector = (t_aiAppendModelVector) GetProcAddress(hLib, "aiAppendModelVector");
- aiDeleteModelVector = (t_aiDeleteModelVector) GetProcAddress(hLib, "aiDeleteModelVector");
- aiPredictionEx = (t_aiPredictionEx) GetProcAddress(hLib, "aiPredictionEx");
- aiExcludeModelVector = (t_aiExcludeModelVector) GetProcAddress(hLib, "aiExcludeModelVector");
- aiExcludeModelVectorRange = (t_aiExcludeModelVectorRange) GetProcAddress(hLib, "aiExcludeModelVectorRange");
- aiIsModelVectorExcluded = (t_aiIsModelVectorExcluded) GetProcAddress(hLib, "aiIsModelVectorExcluded");
- aiSaveCSVFile = (t_aiSaveCSVFile) GetProcAddress(hLib, "aiSaveCSVFile");
-
- /*
- * GetProcAddress returns null on failure
- */
- if( aiRegistration == NULL
- || aiGetVersion == NULL
- || aiCreateModel == NULL
- || aiCreateModelFromCSVFile == NULL
- || aiDeleteModel == NULL
- || aiNormalize == NULL
- || aiDenormalize == NULL
- || aiPrediction == NULL
- || aiGetNumberOfVariables == NULL
- || aiGetNumberOfModelVectors == NULL
- || aiGetNumberOfInputVariables == NULL
- || aiSetDiscreteFlag == NULL
- || aiGetDiscreteFlag == NULL
- || aiSetVariable == NULL
- || aiGetVariable == NULL
- || aiGetVariableVB == NULL
- || aiGetCSVFileModelSize == NULL
- || aiSetCapacity == NULL
- || aiGetCapacity == NULL
- || aiGetFreeEntries == NULL
- || aiInsertModelVector == NULL
- || aiOverwriteModelVector == NULL
- || aiAppendModelVector == NULL
- || aiDeleteModelVector == NULL
- || aiPredictionEx == NULL
- || aiExcludeModelVector == NULL
- || aiExcludeModelVectorRange == NULL
- || aiIsModelVectorExcluded == NULL
- || aiSaveCSVFile == NULL ) {
- MessageBox(NULL, "Failure locating procedures.", "Error",
- MB_OK|MB_APPLMODAL);
- return 0;
- }
- return 1;
- }
-
- /* THE END */
-